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We study heat transport in quantum spin systems analytically and numerically. First, we demonstrate that
heat current through a two-level quantum spin system can be modulated from zero to a finite value by tuning
a magnetic field. Second, we show that a spin system, consisting of two dissimilar parts—one is gapped and
the other is gapless—exhibits current rectification and negative differential thermal resistance. Possible experi-
mental realizations by using molecular junctions or magnetic materials are discussed.
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I. INTRODUCTION

When an electron moves in solids, it carries charge, spin,
as well as heat. The charge degree, the basis of the modern
electronics, has been fully studied over the past decades and
it is still being under intensive investigation at the molecular
level.1,2 On the other hand, the spin degree of freedom,
which may be utilized to carry and process information as
well, has also been explored intensively in past years, which
has resulted in an emerging field “spintronics.”3,4 In this con-
text, spin �magnetization� current in insulating magnetic ma-
terials has attracted considerable attention.5–8 However, since
recent studies showed that thermal conductivity in magnetic
systems can be very high,9,10 then a natural question is to
explore the heat aspect in these materials, such as the mag-
netothermal transport,11–13 and especially heat control/
management.

In fact, with the rapid miniaturization and increase in op-
erational speed of microelectronic devices, a great amount of
redundant heat is produced, which will in turn affect device
performance. Thus heat dissipation and heat management are
becoming more and more important.14,15 Moreover, it was
found recently that heat due to phonons can be used to carry
and process information.16 Therefore, the study of heat con-
duction is not only of fundamental important but also helpful
for the design and fabrication of heat dissipator and phononic
devices. Indeed, many interesting conceptual devices such as
thermal rectifier �diode�,17–20 thermal transistor,21,22 and ther-
mal logic gate23 have been proposed. Experimentally, a
nanoscale solid-state thermal rectifier using deposited carbon
nanotubes and a rectifier using quantum dot have been real-
ized recently,24,25 and a heat transistor—control heat current
of electrons—controlled by a voltage gate has also been
reported.26 Furthermore, Segal and Nitzan27 showed that
thermal rectification can appear in a two-level system �TLS�
asymmetrically coupled to phonon baths, providing the pos-
sibility to control heat at a microscopic level.

In this paper, we demonstrate that the heat part from spins
can be modulated and controlled. For example, we show that
heat current in a two-level system can be modulated from
zero to a finite value by tuning the magnetic field, h. Near
h=0, the two levels are almost degenerate and the system

can jump easily between them; thus, heat current �propor-
tional to h2� is small. As h increases from zero to a finite
value, heat current increases accordingly. We further con-
sider a spin-1/2 system consists of two different segments:
one is gapped and the other is gapless. We show that in such
a structure thermal rectifying efficiency can be very high, up
to ten times. This system also exhibits negative differential
thermal resistance �NDTR�, a feature which is necessary for
building up a thermal transistor.

This paper is organized as follows. In Sec. II, we describe
the spin model and the quantum master-equation �QME�
method. Numerical results about heat modulation, rectifica-
tion, and negative differential thermal resistance are pre-
sented in Sec. III. Finally, Sec. IV is devoted to a summary.

II. MODEL AND METHOD

We consider an inhomogeneous mesoscopic spin-1/2
chain whose Hamiltonian reads

H = �
n=1

N

hn�n
z − Q�

n=1

N−1

��n
x�n+1

x + �n
z�n+1

z � , �1�

where N is the number of spins, the operators �n
x and �n

z are
the Pauli matrices for the nth spin, Q is the coupling constant
between the nearest-neighbor spins, and hn is the magnetic-
field strength �Zeeman splitting� at the nth site. Figure 1
shows a schematic representation of this model. Note that
one can actually use more realistic models, e.g., the Heisen-
berg model �adding �n

y�n+1
y to the second sum in Eq. �1��, but

the results do not change qualitatively �see Fig. 3 for a com-
parison�. Therefore, in the following we focus on model �1�
for simplicity.

FIG. 1. �Color online� A schematic representation of the model
with size N=6. The spin model is connected to two phonon baths
held at different temperatures, TL and TR. An inhomogeneous field
is applied to introduce an asymmetric structure.
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We use the QME �Refs. 28–30� to study heat conduction
in this model. Two phononic baths of different temperatures
are connected to the system at the ends. By tracing out the
baths within the Born-Markovian approximation, we obtain
the equation of motion for the reduced density matrix of the
system ��=1�,

d�

dt
= − i�H,�� + LL� + LR� , �2�

where LL� �LR�� is a dissipative term due to the coupling
with the left �right� bath. LL� is given by LL�= ��XL� ,�1

x�
+H.c.� and LR� can be given in a similar way. Here the
operator XL is defined through

�m�XL�n� = ��m,nnL��m,n��m��1
x�n� , �3�

where �m,n	�m−�n and nL��m,n�= �e�m,n/TL −1�−1 is the Bose
distribution �kB=1� with TL being the temperature of left
bath. 
�n�� and 
�n� are the eigenstates and eigenvalues of the
system Hamiltonian H, respectively. � is the coupling
strength with the bath. The bath spectral function we used is
an Ohmic type. The master equation �Eq. �2�� is solved by
the fourth-order Runge-Kutta method. In numerical simula-
tions, we take �=0.01; the simulation time is chosen long
enough such that the final density matrix reaches a steady
state, �st. The current operator is defined through the equa-
tion of continuity: �tHn= i�H ,Hn�=Jn−Jn+1, where Hn
= �hn�n

z +hn+1�n+1
z � /2−Q��n

x�n+1
x +�n

z�n+1
z � is the local energy

density operator. In our case,

Jn = Qhn��n
y�n+1

x − �n−1
x �n

y� + 2Q2��n−1
z �n

y�n+1
x − �n−1

x �n
y�n+1

z � .

�4�

In the steady state, J=Tr��stJn� is a constant over the chain
�independent of n�.

III. RESULTS AND DISCUSSION

First, we demonstrate the modulation of heat current by
an external field in a TLS, namely, N=1; thus Eq. �1� be-
comes H=h�z. From the QME, we obtain heat current,

J = ��2h�2 nL�2h� − nR�2h�
1 + nL�2h� + nR�2h�

. �5�

Figure 2 shows heat current as a function of the field. The
temperatures of the left and right baths are TL=T0+0.05 and
TR=T0−0.05, respectively; T0 is the mean temperature. In
Fig. 2, we see that heat current first increases with the field
and then decreases. In low fields �h�T0�, nL,R�TL,R /h, then
J	h2. In high fields �h
T0�, nL,R�e−2h/TL,R, then J
	h3e−2h/T0, implying that heat current decays to zero when h
is large. Therefore, in such a model we can modulate the
current from zero to a finite value by gradually switching on
the external field. This result is similar to those observed in
one-dimensional spin-1/2 systems recently,13 although in our
case we consider just one spin.

We now consider N spins in an inhomogeneous magnetic
field, namely, hn=1 �as the unit of energy� if 1�n�N /2 and
hn=0 otherwise �see Fig. 1�. The temperatures of the left and

right baths are TL=T0�1+�� and TR=T0�1−��, respectively,
where T0 is a mean temperature and � is the dimensionless
temperature difference. Figure 3 shows the heat current ver-
sus temperature difference for two models: the square is for a
Heisenberg model; the circle is for model �1�. In both cases,
we can observe very clear thermal rectification and also
negative differential thermal resistance in the negative � re-
gion. However, for simplicity, we focus on heat conduction
properties of model �1� in the following.

In Fig. 4, we show the heat current as a function of the
temperature difference with the mean temperature ranging
from T0=1 to T0=5. When the temperature is low �T0=1�,
we observe that for �
0 the heat current increases with �,
while in the region ��0 the heat current remains very small.
Thus, our model exhibits thermal rectification; namely, heat
flows favorably in one direction. However, when the tem-
perature becomes high, such as T0=5, the magnitude of heat
current changes little as the bath temperatures are exchanged.
In this case the model cannot act as a good rectifier. Never-

FIG. 2. �Color online� Heat current as a function of the field.
The bath temperatures are TL=T0+0.05 and TR=T0−0.05. Three
cases are shown: T0=0.2 �solid line�, T0=0.4 �dashed line�, and
T0=0.6 �dotted line�.

FIG. 3. �Color online� Heat current vs temperature difference.
The squares show the heat current in a Heisenberg model, while the
circles show the current in model �1�. In both models, the bath
temperatures are TL=T0�1+�� and TR=T0�1−��, where T0=1 is
the mean temperature. N=6 and Q=0.2. hn=1 if 1�n�N /2 and
hn=0 otherwise. The dashed lines are to guide for the eyes.

YAN, WU, AND LI PHYSICAL REVIEW B 79, 014207 �2009�

014207-2



theless, in a wide range of temperature �T0�3�, this model
shows thermal rectifying effect; the mechanism will be illus-
trated later. In Fig. 4�b�, we show the heat current for a
model with different couplings. We can see that the rectify-
ing effect may sustain to large coupling constants. To quan-
tify the rectification efficiency, we introduce the ratio, �
= �J+ /J−�, where J+ is the current when TL
TR and J− is the
current when the temperatures are swapped, i.e., TL�TR. In
a weak-coupling case, e.g., Q=0.2, the efficiency may be
more than 10 �see the insets of Figs. 4�a� and 4�b��; however,
as the coupling Q becomes stronger, the efficiency decreases.

To understand the rectifying effect qualitatively, we divide
the system into two segments: the left in a field and the right
in the absence of a field. In a quantum spin chain that is
gapless at h=0, an external field can drive the system phase
transitioned to a gapped state.31 Indeed, we observe an en-
ergy gap of Eg�2.1 in the left segment when h=1, Q=0.1.
Therefore, if the left segment is in contact with a cold bath
and the right with a hot bath, i.e., TL=Tc and TR=Th �Tc
�Th�, then the left segment will largely remain in the ground
state, �gL�. This is reflected in Fig. 5�a�, which shows the
probability PL=Tr��gL��gL��st� �PR� to find the left �right�
segment in the ground state. Around �=−0.5, the transition
rate of the left segment between different levels is sup-

pressed completely since PL=1, and thus the heat current
vanishes �see Fig. 5�b��. Reversely, around �=0.5, the left
segment is in contact with a hot bath and the right with a
cold one; the transition rate of the left segment between dif-
ferent levels becomes large, and then heat current is large.
This can also explain the low rectifying efficiency when the
mean temperature T0 is increased. In this case, the transition
probability of the left part between different levels may also
be large; then, the magnitude of heat current changes little
when the bath temperatures are exchanged, implying a low
efficiency. In fact, we may observe thermal rectification pro-
vided that T0�Eg.

In Fig. 6, we show the heat current for a system with
different sizes. In the small size case �N=4�, we just observe
thermal rectification with a low efficiency. The reason may
be that the effective coupling between the left and the right
parts can be strong for a small size system. As a result, the
left part may be excited by the right part even though it is
connected to a cold bath. However, in a larger size system,
i.e., N=6 or N=8, we may observe both thermal rectification
and negative differential resistance. Note also that the effi-
ciency changes very little when N=6 or N=8, implying that
the model may act as a rectifier in an even larger size case.

In fact, in Fig. 4, we can also observe NDTR in the region
of ��0, i.e., the decrease in heat current with the increase in

FIG. 4. �Color online� �a� Heat current vs temperature differ-
ence. The temperatures of the baths are TL=T0�1+�� and TR

=T0�1−��, where T0 is the mean temperature, ranging from T0=1
to T0=5. N=6 and Q=0.6. hn=1 if 1�n�N /2 and hn=0 other-
wise. �b� Normalized heat current �J /J��=0.5�� vs � with different
couplings. Here T0=1. The insets show the rectification efficiency,
�= �J+ /J−�, vs the temperature difference. The lines are guide for the
eyes.

FIG. 5. �Color online� �a� The probability PL �PR� to find the left
�right� part of the system in the ground state as a function of the
temperature difference. T0=0.7, N=6, Q=0.1, and hn=1 if 1�n
�N /2 and zero otherwise. �b� Heat current as a function of the
temperature difference.

FIG. 6. �Color online� Heat current of a system with difference
sizes. The bath temperatures are TL=T0�1+�� and TR=T0�1−��.
T0=1 and Q=0.6. The field is hn=1 if n�N /2 and hn=0 otherwise.
The inset shows the rectification efficiency as a function of the
temperature difference.
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temperature difference. A clearer representation is shown in
Fig. 7, where we fix the temperature of the right bath, TR
=1.5. We see that when the temperature of the left bath TL is
increased from 0.4 to 1.0, i.e., decreasing the temperature
difference, thermal current increases. The reason is that if TL
is low, the left part is rarely excited, implying a small cur-
rent; otherwise, current is large. NDTR is an important
physical property that may be used to build spin-based ther-
mal transistors.

IV. SUMMARY

We have studied the possibilities to control heat current in
mesoscopic spin models. We have showed that heat current
can be modulated from zero to a finite value in a two-level

system by tuning the magnetic field. We have also studied
thermal rectification and negative differential thermal resis-
tance in an asymmetric model. The model consists of two
parts: the left part is gapped and the right part is gapless.
Such a structure is of great importance for the model to ex-
hibit rectification and NDTR. In certain cases, we have found
that the rectification efficiency, �J+ /J−�, can be larger than 10.
Finally, we would like to discuss the possible realizations of
the model in experiment. The first is to make use of the
asymmetric structure in molecular bridges that can be easily
introduced. For example, we may use a molecule consisting
of two �weakly� coupled nonidentical spatially separated seg-
ments; each is taken to be an anharmonic system, e.g., an-
harmonic vibrations or molecular librations, where at low
temperatures only the lowest �two� quantum states are rel-
evant. However, in this case, there are gaps in both segments,
so the rectifying effect may be not so high. The second pos-
sible way is to use magnetic materials or molecular
magnets.32 The model may be made up of two coupled mag-
netic materials: one is gapped and the other is gapless. For
the gapped material, one could use, for example, the spin
ladder materials,33 or introduce a magnetic field to open a
gap.
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